Solution to Joe Drops the Ball

In two previous blog posts about Newton’s Cannon and Joe Drops the Ball I posed the question: If falling objects go faster and faster, why don’t orbiting objects fall out of orbit and crash to the ground?

The question is legitimate and also has a perfectly legitimate explanation.

The rate of a falling object is 32.2 feet per second per second, i.e. it goes faster and faster as it goes down. It accelerates on the way to the ground. So the first question is this: 1) Is an object in orbit in free fall? The answer is yes. 2) Do falling objects accelerate as they fall to the ground? The answer is yes. 3) Do orbiting objects accelerate and thus fall to the ground? The answer is no.

It’s all in the definition of accelerate. Acceleration is a change in velocity not just a change in speed. Velocity is the speed in a given direction, but because an object in orbit is always changing direction it is technically accelerating even if it’s speed isn’t changing.JoeDropsBall5

The force of gravity bending the forward motion of the orbiting object changes the direction of the object. The object is accelerating even if it’s speed isn’t changing, because it is constantly changing direction.

This is alternatively explained in the article I wrote called The Little Rocket that Was.

Author: Wayne Boyd

Wayne Edward Boyd was born in Morristown, New Jersey in 1953. He is a published author, former ISKCON sannyasi, and traveler, having lived on 3 continents and visited 37 countries. He presently lives in Amarillo, Texas working as a correctional officer and has interests in photography, political science and astronomy.

2 thoughts on “Solution to Joe Drops the Ball”

Let's hear what you have to say. Write a comment.

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s